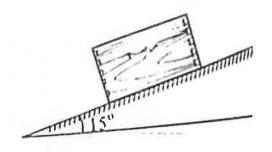
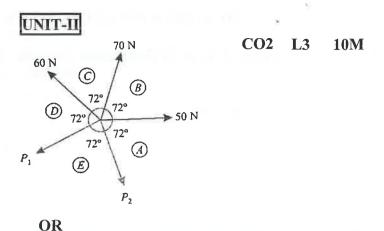
O.P.Code: 23CE0102

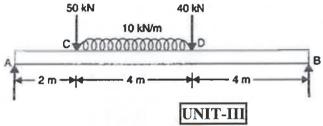
R23

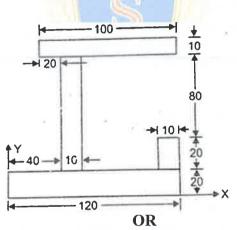

H.T.No.

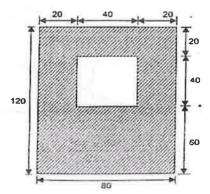
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)


B.Tech. I Year II Semester Regular & Supplementary Examinations June-2025 ENGINEERING MECHANICS

(Common to CE & MECH)


Time: 3 Hours		Max. Marks: 70			
		PART-A			
		(Answer all the Questions $10 \times 2 = 20$ Marks)			
1	a	Discuss briefly the application of moment of force.	CO ₁	L2	2M
	b	Explain cone of friction.	CO ₁	L2	2M
	c	State and explain Triangle Law of forces.	CO ₂	L2	2M
	d	What are condition of equilibrium of Non-Concurrent System of Forces.	CO ₂	L2	2M
	C	Define the terms centroid and centre of gravity.	CO3	LZ	2M
	f	What are values of moment of inertia and polar moment of inertia for a	CO ₃	L2	2M
		circle of diameter 'd'?			
	g	Explain the terms Time of Flight and Range in projectile motion.	CO ₄	L2	2M
	h	Explain the terms Work and Energy. Give their units in SI system.	CO ₄	L2	2M
	i	Discuss angular displacement? What is units?	CO ₅	L2	2M
	j	Explain the terms (i) angular velocity and (ii) angular acceleration.	CO ₅	L2	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2		The following forces act at a point:	CO ₁	L3	10M
		(i) 20 N inclined at 30o towards North of East			
		(ii) 25 N towards North			
		(iii) 30 N towards North West, and			
		(iv) 35 N towards at 40o towards South of West. Find the magnitude and			
		direction of the resultant force.			
		OR			
3	a	Explain the following:	CO ₁	L2	5M
		(i) Coefficient of static friction			
		(ii) Coefficient of kinetic friction			
		(iii) Limiting force of friction			
		(iv) Angle of friction			
		(v) Angle of repose.			
	b	A wooden block of mass 40 kg is on rough inclined plane as shown in	CO ₁	L3	5M
		Figure. Find the frictional force at surface in contact if $\mu s = 0.4$ and $\mu k =$			
		0.35.			


4 a Five strings are tied at a point and are pulled in all directions, equally spaced from one another as shown in Figure. If the magnitude of the pulls on three consecutive strings is 50 N, 70 N and 60 N respectively, find graphically the magnitude of the pulls on two other strings.


5 a A simply supported beam of length 10 m, carries the uniformly CO2 L3 10M distributed load and two point loads as shown in Figure. calculate the support reactions.

6 a Determine the centroid of the built-up section shown in Figure. Express CO3 L3 10M the coordinates of the centroid with respect to x and y axes shown.

7 The cross-section of a rectangular hollow beam is as shown in Figure. CO3 L3 10M Determine the polar moment of inertia of the section about centroidal axes.

UNIT-IV

- A stone is thrown vertically upwards with a velocity of 19.6 m/s from the CO4 L3 10M top of tower 24.5 m high. Calculate:
 - (i) time required for the stone to reach the ground
 - (ii) velocity of the stone in its downward travel at the point in the same level as the point of projection.
 - (iii) the maximum height to which the stone will rise in its flight.

OR

- A 20 kN automobile is moving at a speed of 70 kmph when the brakes CO4 L3 10M are fully applied causing all four wheels to skid. Determine the time required to stop the automobile
 - (a) on concrete road for which $\mu = 0.75$.
 - (b) on ice for which $\mu = 0.08$.

UNIT-V

The angular acceleration of a flywheel is given by $\alpha = 12 - t$, where α is CO5 L3 10M in rad/sec2 and t is in seconds. If the angular velocity of the flywheel is 60 rad/sec at the end of 4 seconds, determine the angular velocity at the end of 6 seconds. How many revolutions take place in these 6 seconds?

OR

- The equation for angular displacement of a body, moving in a circular CO5 L3 path of radius 200 m is given by $\theta = 18t + 3t2-2t3$ where θ is the angular displacement at the end of t sec. Find
 - (i) angular velocity and acceleration at start,
 - (ii) time when the body reaches its maximum angular velocity; and
 - (iii) maximum angular velocity of the particle.

No similar

*** END ***

10M